Exercise 11

Solve the equation $z^{2}+z+1=0$ for $z=(x, y)$ by writing

$$
(x, y)(x, y)+(x, y)+(1,0)=(0,0)
$$

and then solving a pair of simultaneous equations in x and y.
Suggestion: Use the fact that no real number x satisfies the given equation to show that $y \neq 0$.

$$
\text { Ans. } z=\left(-\frac{1}{2}, \pm \frac{\sqrt{3}}{2}\right) .
$$

Solution

Use the definition of multiplication of complex numbers in equation (4) on page 2.

$$
\begin{aligned}
0 & =z^{2}+z+1 \\
(0,0) & =(x, y)(x, y)+(x, y)+(1,0) \\
& =\left(x^{2}-y^{2}, y x+x y\right)+(x, y)+(1,0) \\
& =\left(x^{2}-y^{2}, 2 x y\right)+(x, y)+(1,0) \\
& =\left(x^{2}+x+1-y^{2}, 2 x y+y\right)
\end{aligned}
$$

Match the real and imaginary parts on both sides to get a system of equations for x and y.

$$
\left.\begin{array}{r}
x^{2}+x+1-y^{2}=0 \\
2 x y+y=0
\end{array}\right\}
$$

Factor the second equation.

$$
y(2 x+1)=0
$$

By the zero product property of real numbers,

$$
\begin{array}{lll}
y=0 & \text { or } & 2 x+1=0 \\
y=0 & \text { or } & x=-\frac{1}{2}
\end{array}
$$

If $y=0$, then the first equation becomes

$$
x^{2}+x+1=0,
$$

which has no real solution. x is assumed to be real, so $y \neq 0$.

On the other hand, if $x=-1 / 2$, then the first equation becomes

$$
\begin{gathered}
\left(-\frac{1}{2}\right)^{2}+\left(-\frac{1}{2}\right)+1-y^{2}=0 \\
\frac{3}{4}-y^{2}=0 \\
y^{2}=\frac{3}{4} \\
y= \pm \frac{\sqrt{3}}{2}
\end{gathered}
$$

Therefore, the two solutions to the complex quadratic equation are

$$
z=\left(-\frac{1}{2}, \pm \frac{\sqrt{3}}{2}\right) .
$$

